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ABSTRACT

Given any graph G, there is a bivariate polynomial called Tutte polynomial which

can be derived from G. We denote such polynomial by T (G;x, y). This thesis intro-

duces the two techniques commonly used to compute T (G;x, y) along with several

examples. Further, we determine T (G;x, y) for various classes of graphs such as

cycles, trees, cacti, θ(2, 2, 1), which is a multi-bridge graph, and the well-known Pe-

terson graph. We plot these surfaces, their contours and, for each such graph G, we

evaluate their T (G;x, y) for some values (x, y) along a curve. We obtain important

information about these graphs namely the number of spanning trees and number

of spanning subgraphs. We also introduced some related polynomials such as the

chromatic polynomial, the flow polynomial and the reliability polynomial.
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Chapter 1 Introduction

1.1 Background and Overview

The fundamental idea of graphs were first innovated in the 1700s by Swiss mathe-

matician Leonhard Euler. His efforts and solution to the notable Königsberg bridge

problem are ordinarily referred to as the root of graph theory. The German city of

Königsberg, known today as Kaliningrad, Russia, is located on the Pregolya river.

The geographical design is composed of four primary bodies of land joined together

by seven bridges. The dilemma presented to Euler was a simple problem. Was it

possible to travel across town in such a way that one would cross over every bridge

once, and only once? This later became known as the Euler walk. Euler, understand-

ing that the primary problems were the four bodies of land and the seven bridges,

preceded to draw out the first known visual representation of a modern graph. A

modern graph, is represented by a set of points, known as vertices or nodes, that are

connected by a set of connecting lines known as edges. By first attempting to create

paths in the graph, then later experimenting with multiple theoretical graphs with

alternating number of lines and dots, or vertices and edges, he eventually concluded a

general rule. In order to walk without repeating an edge, or in an Euler path , a graph

can have none or two odd number of nodes. From there, the area of mathematics

known as graph theory would lack much key progress for decades.

When William Thomas Tutte started his doctoral research in 1945, he had ideas in

graph theory that originated in his study of squaring the square. During the beginning

stages of his PhD research, Tutte told his supervisor Wylie that he had found a non-

hamiltonian planar cubic graph, assuring Wylie that it was 3-connected and that it

was a counterexample to Tait’s conjecture. Tait’s conjecture states that "Every 3-
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connected planar cubic graph has a Hamiltonian cycle along the edges through all

its vertices". His supervisor, however, was not impressed. In those times, graph

theory still had a low reputation in the mathematical world. Because of this, Tuttes

Ph.D. supervisor, advised him to drop graph theory and take up something that was

actually respectable, such as differential equations. Nevertheless, Tutte’s pursued

doctoral research was in the mostly uncharted area of graph theory. He started with

four papers, each of lasting significance in mathematics today. The first was the

counterexample to Tait’s conjecture. The second was a study of symmetry in graphs.

The third contained what was to become the most famous of Tutte’s discoveries,

his 1-factor theorem. The last in this group, ‘a ring in graph theory’, identifies a

function that satisfies a natural product rule, which he spoke of as a V-function.

In a later paper, he specializes V-function to ‘dichromate’: other research workers

preferred ‘Tutte Polynomial’, the name by which this function is now known. These

research papers were predecessors to Tutte’s PhD thesis. Tutte explained: ‘My thesis

attempted to reduce Graph Theory to Linear Algebra. It showed that many graph-

theoretical results could be generalized as algebraic theorems about structures I called

‘chain-groups’. Essentially, I was discussing a theory of matrices in which elementary

operations could be applied to rows but not columns.’ This is what we know today

as matroid theory.

Tutte was able to express edges and vertices as algebraic equations using the Tutte

polynomial. The Tutte polynomial of a graph is a 2-variable polynomial of significant

importance in mathematics, as well as statistical physics, and biology. In a strong

sense it “contains” every graphical invariant that can be computed by deletion and

contraction. The Tutte polynomial can be evaluated at particular points (x,y) to give

numerical graphical invariants, including the number of spanning trees, the number

of forests, the number of connected spanning subgraphs, the dimension of the bicycle

space and many more. The Tutte polynomial also specialises to a variety of single-

variable graphical polynomials of independent combinatorial interest, including the

chromatic polynomial, the flow polynomial and the reliability polynomial.

William Tutte was a famous mathematician and code breaker for Britain during
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War World II. His contributions to mathematics as a whole are extensive, but his

expertise with discrete mathematics, graph theory, and matroid theory was unpar-

alleled. After his undergraduate time at Cambridge studying chemistry, he decided

to join Bletchley Park to practice code breaking. During his time at Bletchley Park,

he worked alongside prominent mathematicians such as Alan Turing. After this, he

decided to return to Cambridge to study mathematics at the doctoral level where he

pioneered the study of algebraic representations of graphs (later known as matroid

theory), see [1].

His development of the Tutte Polynomial began when he was in undergraduate

studies. He and three friends decided to look at the idea of a perfect rectangle.

Specifically, "dissecting" a rectangle into unequal squares. This eventually would

follow him as he found his way back to mathematics in his graduate degree. His

curiosity began with a string of polynomials and their relationship to graphs. The

first was the Kirchhoff equations for networks. He later found himself looking at

Whitney’s work with chromatic polynomials, which he later attributed much of his

work in Tutte Polynomials to. Infatuated with the work, generalizing flow polynomials

led him to the study of V-Functions and W-Functions. While working more with the

W-Functions, Tutte began to simplify and develop the Tutte Polynomial that we

know today, see [2]. Tutte polynomials have now found their way into other fields

such as knot theory and statistical physics, see [3] and [4].

In the next section of this chapter (Chapter 1), we provide some essential def-

initions in the area of graph theory. Then, in Chapter 2, we introduce the tools

to compute Tutte polynomials, namely a rank-definition technique and a recursive

technique. Several examples are given for each technique. In Chapter 3, after in-

troducing some fundamental definitions, we prove some results for several classes of

graphs, namely some cyclic graphs including cacti and some 2-trees such as fan. In

Chapter 4, we show three related univariate polynomials which are well-known for

their applications: chromatic polynomial, flow polynomial and reliability polynomial.

In Chapter 5, we introduce the reader to some applications of Tutte polynomials.

Some of the evaluations of this function give important invariants of the graphs; the
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spanning subgraphs, the spanning trees, etc. We also added some 3-D and contour

plots for several examples. We close this thesis with Chapter 6 where we introduce

the computation process of the Tutte polynomial of multigraphs.

1.2 Graph Theory Preliminaries

A simple graph G = (V,E) consists of V = V (G), a nonempty set of objects called

vertices (or nodes) and E = E(G), a set of an unordered pair of distinct vertices

called edges.

Figure 1.1: Example of a simple graph on 6 vertices

See Figure 1.1, for example. Vertices, say u and v that share an endpoint are said

to be adjacent; u is also said to be a neighbor of v and vice-versa the edge denoted

by uv is said to be incident to the vertices u and v. The order of the graph G is the

size of its vertex set which we denote by |V | and the size of the edge set, denoted by

|E|, is called size of the graph G. The degree of vertex, v denoted by deg(v), is the

number of edges incident to v ; that is the size of its neighbor.

A vertex of degree 0 is said to be isolated while a vertex of degree 1 is called a

leaf. The minimum degree of G, denoted by δ(G) , is its smallest vertex degree,

and the maximum degree of G denoted by ∆(G) is the largest degree among its

vertices. A vertex u is said to be connected to a vertex v, in a graph G, if there

exists a sequence of edges (or path) from u to v in G. A graph G is connected if

there is a path that connects every two of its vertices. Otherwise, it is said to be

disconnected. In which case, it has two or more components.
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An edge e ∈ E(G) with ends u, v ∈ V (G) is denoted by {u, v} or uv; e is said

to be incident with u and v. An edge {u, u} is called a loop. An edge {u, v} that

occurs more than once in E is called a multiple (or parallel) edge. A graph G is

said to be isomorphic to a graph H if G can be obtained by relabelling the vertices

of H; and we write G ∼= H.

There are other types of graphs such as multigraphs (when multiple edges are

allowed between vertices), pseudographs (when a vertex is allowed to be connected

to itself, as in a loop) and directed graphs (when each edge is given an orientation,

using an arrow).

1.2.1 Subgraphs

Given a graph G with vertex set V (G) and edge set E(G), we call a graph H a

subgraph of G if the vertex set V (H) ⊆ V (G) and the edge set E(H) ⊆ E(G); H is

obtained from G by deleting edges (including incident vertices) and/or vertices from

G.

1.2.2 Spanning subgraphs

Suppose H is a subgraph of G. If V (H) = V (G) and E(H) ⊆ E(G), then H is said

to span G. See Figure 1.2 shows some cyclic spanning subgraphs while 2.1 shows

some examples of spanning trees and forests (not connected trees). See Figure

Figure 1.2: Some spanning subgraphs of θ(1, 2, 2)

5



Chapter 2 Techniques for Computing Tutte Polynomials

Every graph G has an associated polynomial in two variables called the Tutte poly-

nomial which we denote by T (G;x, y). In this section we define the polynomial in

two equivalent ways: a decomposition on all the subgraphs of a graph with the same

set of vertices and a subset of the edges also known as rank or nullity and a recursive

definition (or an algorithm) on the edges of the graph. We also give several examples

of how to calculate the Tutte polynomial for graphs by either approach.

2.1 Rank Definition of Tutte Polynomials

The Tutte polynomial of a graph G = (V,E) denoted by T (G;x, y) = TG(x, y) = T (G)

is a bivariate (two variables) polynomial. Many problems in graph theory can be

reduced to problems of finding and evaluating the Tutte polynomial at certain values.

Here, we define the Tutte polynomial for graphs. Subsequent Chapters will rely on

these graphs whether to plot Tutte polynomials, to evaluate Tutte polynomials, or to

produce other related polynomials.

Definition 2.1.1 (Definition: Rank-Nullity). If A ⊆ E, we define the rank of A to

be r(A) = |V | − c(A), where c(A) represents the number of connected components of

the graph induced subgraph (V,A) and the nullity of A, is |A| − r(A). Thus, Tutte

polynomial is defined (rank-nullity) as

T (G;x, y) =
∑
S⊆E

(x− 1)c(S)−c(E)(y − 1)c(S)+|S|−|V |,

where c(S) is the number of components in the spanning subgraph (V, S), |V | is the

number of vertices in V , and |S| is the number of edges in S ⊆ E.

A. Basic Notation Meanings
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G ........................... A graph.

V ........................... The vertex set of G.

E ........................... The edge set of G.

G = (V,E) ............. A graph with vertex set V and edge set E.

S ⊆ E .................... An edge set S that is a subset of E.

C(S) ...................... The number of components in the spanning subgraph(s) (V, S).

c(E) ...................... The number of components in the graph of G = (V,E).

|S| .......................... The number of edges in the spanning subgraph(s) (V, S).

|V | .......................... The number of vertices in G = (V,E).

B. Basic Steps

Step 1) Looking at the original graph, G, find the following: c(E) and |V |.

Step 2) Allow |S| = 0, 1, 2, ..., |E| and find all spanning subgraphs with the

corresponding edge set.

Step 3) Calculate c(S) and |S| for each (set of) spanning subgraph(s).

Step 4) Calculate the partial Tutte Polynomial for each (set of) spanning

subgraph(s).

Step 5) Multiply the corresponding partial Tutte Polynomials by the number of

subgraphs in the set and sum all the partial Tutte Polynomials together to achieve

the Tutte Polynomial for that specific graph.

2.1.1 Examples

Example 1: Tutte Polynomial of a cycle on 4 vertices

Here, we consider a cycle C4, and apply the definition technique of computing the

Tutte polynomial. We follow the steps outlined earlier. Figure 2.1 shows details of

the following steps.

Step 1) Looking at the original graph, you can see that there are four vertices,

|V| = 4, and there is only one component, c(E) = 1.

Step 2) Listed above.
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Step 3) Look at the lists of spanning subgraphs and find how many components and

edges represent that set of subgraphs.

c(S0) = 4; |S0| = 0

c(S1) = 3; |S1| = 1

c(S2) = 2; |S2| = 2

c(S3) = 1; |S3| = 3

c(S4) = 1; |S4| = 4

Step 4) Calculate the partial Tutte Polynomial for each set of spanning subgraph(s).

T (S0;x, y) = (x− 1)4−1(y − 1)4+0−4 (2.1)

= (x− 1)3

T (S1;x, y) = (x− 1)3−1(y − 1)3+1−4 (2.2)

= (x− 1)2

T (S2;x, y) = (x− 1)2−1(y − 1)2+2−4 (2.3)

= (x− 1)1

T (S3;x, y) = (x− 1)1−1(y − 1)1+3−4 (2.4)

= 1

8



T (S4;x, y) = (x− 1)1−1(y − 1)1+4−4 (2.5)

= (y − 1)

Step 5) Multiply the partial Tutte Polynomials by the number of subgraphs in each

set and sum the results.

T (G;x, y) = T (S0;x, y) + 4T (S1;x, y) + 6T (S2;x, y) + 4T (S3;x, y) + T (S4;x, y)

= (x− 1)3 + 4(x− 1)2 + 6(x− 1) + 4× 1 + (y − 1)

= x3 + x2 + x+ y.

(2.6)

9



Figure 2.1: A cyclic graph G and it’s spanning subgraphs

Example 2: Tutte Polynomial of a Peterson graph

Following Steps 1-4, we obtain the following:

10



TG(x, y) =
∑
A⊆E

(x− 1)K(A)−K(E)(y − 1)K(A)−|A|−|V |

= 36x+ 120x2 + 180x3 + 170x4 + 114x5 + 21x7 + 6x8 + x9

+ 36y + 84y2 + 75y3 + 35y4 + 9y5 + y6

+ 168xy + 240x2y + 170x3y + 70x4y + 12x5y

+ 171xy2 + 105x2y2 + 30x3y2

+ 65xy3 + 15x2y3

+ 10xy4.

(2.7)

Table of Peterson Graph Tutte Polynomial

Figure 2.2: Peterson Graph

Table 3.2.1 illustrates the coefficients of the polynomial where matrix element

(i, j) corresponds to the coefficient of xiyj for 0 ≤ i ≤ 9, 0 ≤ j ≤ 6.

11



0 36 84 75 35 9 1
36 168 171 65 10
120 240 105 15
180 170 30
170 70
114 12
56
21
6
1

2.2 Recursion of Tutte polynomials

Definition 2.2.1. The Tutte polynomial of a graph G = (V,E) is defined alternatively

by:

T (G;x, y) =



1 E(G) = ∅

yT (G− e;x, y) e ∈ E(G) and e is a loop

xT (G/e;x, y) e ∈ E(G) and e is a bridge

T (G− e;x, y) + T (G/e;x, y) otherwise.

This definition provides a recursive algorithm also known as deletion and con-

traction method for computing T (G;x; y). We illustrate this process in the next

figure.

Figure 2.3: Deletion vs Contraction

2.2.1 Examples

Example 1: Cycle on 3 vertices or complete graph on 3 vertices See Figure

2.4 for details. Consider an edge e ∈ C3. We apply the deletion-contraction algorithm

12



to obtain:

T (C3;x, y) = T (C3 − e) + T (C3/e)

= T (P2;x, y) + T (C2;x, y)

Further, from C2, we apply the algorithm once again, to obtain:

T (C2;x, y) = T (C2 − e) + T (C2/e)

= T (P1;x, y) + T (L;x, y)

where L is a single loop. In which case,

T (C3;x, y) = T (P2;x, y) + T (P1;x, y) + T (L;x, y)

Now, we know that T (P2;x, y) = x2, T (P1;x, y) = x, and T (L;x, y) = y. Hence,

T (C3;x, y) = x2 + x+ y. (2.8)

Figure 2.4: Recursion Technique on K3

Example 2: Cycle on 4 vertices Consider the following graph, G, using the

deletion-contraction algorithm find the corresponding Tutte Polynomial:

13



T (C4;x, y) = T (C4 − e) + T (C4/e)

= T (P3;x, y) + T (C3;x, y) (2.9)

Now, from C3, we apply the algorithm once again, to obtain:

T (C3;x, y) = T (C3 − e) + T (C3/e)

= T (P2;x, y) + T (C2;x, y)

Further, from C2, we apply the algorithm once again, to obtain:

T (C2;x, y) = T (C2 − e) + T (C2/e)

= T (P1;x, y) + T (L;x, y)

where L is a single loop. In which case,

T (C4;x, y) = T (P3;x, y) + T (P2;x, y) + T (P1;x, y) + T (L;x, y)

Now, we know that

T (P3;x, y) = x3 T (P2;x, y) = x2, T (P1;x, y) = x, and T (L;x, y) = y. Hence,

T (C4;x, y) = T (P3;x, y) + T (P2;x, y) + T (P1;x, y) + T (L;x, y) (2.10)

= x3 + x2 + x+ y

Later, we show using an inductive argument the general formula for the Tutte poly-

nomial of Cn, for n ≥ 2.
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Figure 2.5: Deletion-Contraction Algorithm for Tutte Polynomials on C4

As a generalization of a tree, a k-tree is a graph which arises from a k-clique by

0 or more iterations of adding n new vertices, each joined to a k-clique in the old

graph; This process generates several non-isomorphic k-trees. Figure 1 shows two

non-isomorphic 2-trees on 6 vertices. K-trees, when k ≥ 2, are shown to be useful

in constructing reliable network in [12]. Here, we denote by T n
k , a k-tree on n + k

vertices which is obtained from a k-clique S, by repeatedly adding n new vertices and

making them adjacent to all the vertices of S. When k = 2, this particular 2-tree is

also known as an (n+ 1)-bridge θ(1, 2, . . . , 2).

In the next section, we obtain some results of two members of this family. See

Figure 3.1 as an example. Here, we present an example of a 2-tree graph in the

case when the Fan and the bridge graphs are actually isomorphic. In which case,

θ(1, 2, 2) ∼= F 2.

Example 3: A 2-tree graph

The dashed edge indicates the edge that is picked when applying the recurrence and

Figure 2.6 shows that

T (G;x, y) = x3 + 2x2 + 2xy + x+ y + y2

15



Figure 2.6: Deletion-Contraction Algorithm for a 2-tree graph

Given a path P l := v1, e1, v2, . . . , el, vl+1, when v1 = vl+1, then P l ∼= Cl and we

define a wheel graph by W l = Cl∨{w} for all l ≥ 2. Obviously, the case when l = 1,

W 2 ∼= C3. C l is often referred to as the rim of the wheel and the edges not in the rim

are called spokes. We will call a wheel on l rim edges, an l−wheel, for short.

Example 4: A Wheel graph

We leave it to the reader to refer to Figure 2.7 to help establish that the Tutte

polynomial of a Wheel W4, is

T (W4;x, y) = x3 + 3x2 + 2x+ 4xy + 2y + 3y2 + y3
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Figure 2.7: Deletion-Contraction Algorithm for Tutte Polynomials on W4

Example 5: A Cactus

As an exercise, we leave it to the reader verify that Tutte polynomial of a cactus,

shown in Figure 2.8 is

T (G;x, y) = x7 + 2x6 + x5y + 2x5 + 2x4y + x4 + 2x3y + x2y2,

following a recursive argument. In Corollary 3.2.2, we present a general formula for

any cactus.
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Figure 2.8: A cactus
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Chapter 3 Tutte Polynomial of Some Graphs

We begin this chapter with some useful definitions.

3.1 Basic Definitions

Let G1 and G2 be two graphs. The join of G1 and G2, denoted by G1 ∨ G2, is the

graph H whose vertex set is V (H) = V (G1) ∪ V (G2), a disjoint union, and whose

edge set is E(G) = E(G1)∪E(G2)∪ {v1v2 | v1 ∈ V (G1), v2 ∈ V (G2)}. For example,

Kn1 ∨Kn2 ∨ . . . ∨Knk
= K(n1, n2, . . . , nk) is a complete k−partite graph with part

sizes n1, . . . , nk. For convenience, an l−cycle, written Cl := (v1, v2, . . . , vl), consists of

l distinct vertices v1, v2, . . . , vl, and l edges ej := {vj, vj+1}, with 1 ≤ j ≤ l − 1, and

el := {vl, v1}. When el = ∅, then we have an (l − 1)−path which we denote by P l−1.

Given P l := v1, e1, v2, . . . , el, vl+1, when v1 = vl+1, then P l ∼= Cl and we define a

wheel graph by W l = Cl ∨ {w} for all l ≥ 2. C l is often referred to as the rim of the

wheel and the edges not in the rim are called spokes. We will call a wheel on l rim

edges, an l−wheel, for short.

A multi-bridge (or m−bridge) graph G = θ(a1, . . . , am) is the graph obtained

by connecting two distinct vertices with m ≥ 2 internally disjoint paths of lengths

a1, . . . , am respectively, with ai ≥ 1. See Figure 3.1(b) for an example of when m = 4.

For instance, when m = 2, θ(a1, a2) ∼= Ca1+a2 . For our result, we assume m ≥ 2 and

ai ≥ 1, though it is customary to define θ(a1, . . . , am) for m ≥ 3 and ai ≥ 2. As such,

a multi-bridge graph is a generalization of the well-known θ−graph [23].

A cactus is a simple connected graph in which every pair of cycles share at most

one vertex. A cactus with one cycle is called a unicyclic graph. Figure 2.8 shows a

picture of a cactus with two cycles and two edges or bridges.
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3.2 Some Results

Theorem 3.2.1. If Tn is a tree with n vertices then T (Tn;x, y) = xn−1.

Proof. The result follows directly from the definition since each tree on n vertices

has exactly n − 1, edges, each form a bridge; they they account for x, in the Tutte

polynomial formula.

Theorem 3.2.2. The Tutte polynomial of a simple n−cycle is T (Cn;x, y) =
n−1∑
i=1

xi +

y, for all n ≥ 3.

Proof. Basis case: When n = 3. The result follows from 2.8. Let’s assume the

statement is true when n = k, i.e., that T (Ck;x, y) =
k−1∑
i=1

xi + y. We now proceed to

prove the statement when n = k + 1. Consider a cycle on k + 1 vertices, Ck+1. Take

any edge e ∈ Ck+1. We apply the deletion-contraction algorithm on Ck+1, and obtain

that,

T (Ck+1;x, y) = T (Ck+1 − e) + T (Ck+1/e)

= T (Pk;x, y) + T (Ck;x, y)

= xk +
k−1∑
i=1

xi + y, by the inductive hypothesis and Theorem 1.

=
k∑

i=1

xi + y,

(3.1)

giving the result for all n ≥ 3.

Corollary 3.2.1. The Tutte polynomial of a unicyclic graph G with an n−cycle and

r bridges is T (G;x, y) =
n+r−1∑
i=1

xi + yxr, for all n ≥ 3.

Proof. Consider G. In which case, G is a cycle, with r bridges. Each bridge con-

tributes to xr to the Tutte polynomial. Hence

T (G;x, y) = xr(
n−1∑
i=1

xi + y), (3.2)
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giving the result after an expansion, for all n ≥ 3.

Corollary 3.2.2. The Tutte polynomial of any cactus graph G with l distinctmj−cycles

and r bridges is T (G;x, y) =
l∏

j=1

(

mj−1∑
i=1

xi + y)xr, for each mj ≥ 2, l ≥ 1.

Proof. Consider G. In which case, G is has l cycles, each of length mj ≥ 2. It follows

from the definition of Tutte polynomial and Corollary 3.2.1 that

T (G;x, y) = xr(
l∏

j=1

(T (Cmj
;x, y)

= xr
l∏

j=1

(

mj−1∑
i=1

xi + y), (3.3)

giving the result.

Figure 3.1: Two non-isomorphic 2-tree graphs

Corollary 3.2.3. The Tutte polynomial of any graph G = θ(1, a1, a2) is T (G;x, y) =
a1+a2−2∑

i=1

xi + y + (

a1−1∑
j=1

xj + y)(

a2−1∑
k=1

xk + y) for each a1, a2 ≥ 2.

Proof. We can assume that G := Ca1 ∪ Ca2 , together, sharing an edge e. Apply the

deletion-contraction algorithm on e. In which case, G− e produces a cycle of length

a1 + a2 − 2 while G/e results into a cactus that we denote by Ha1+a2−2. Note that

Ha1+a2−2 has exactly two cycles, each of length Hai−1, i = 1, 2. So, we have

T (G;x, y) = T (G− e) + T (G/e)

= T (Ca1+a2−2;x, y) + T (Ha1+a2−2;x, y)

=

a1+a2−2∑
i=1

xi + y + (

a1−1∑
j=1

xj + y)(

a2−1∑
k=1

xk + y). (3.4)
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The result follows. Observe that the last equation follows from Corollary 3.2.2 when

r = 0, we giving the result.

Let P l := (v1, e1, v2, . . . , el, vl+1) denote an alternating sequence of distinct vertices

vi and distinct edges ei. We define an l−fan by F l = P l ∨ {w}, with w 6= vi for

1 ≤ i ≤ l + 1. See Figure 3.1(a) for an example of a fan when l = 3. We note that

F 0 is an edge of multiplicity 2 (or a 2−edge) and F 1 ∼= C3 which Tutte polynomials

are x+ y and x2 + x+ y respectively. Thus, it is customary to define a fan graph on

l ≥ 2.

Theorem 3.2.3. Suppose F l is an l−fan. Then, T (F l;x, y) =

xT (F l−1) +
l−1∑
i=0

yiT (F l−i−1) with T (F 0) = x+ y and l ≥ 2.

Proof. When l = 2, let’s suppose F 2 := (v1, e1, v2, e2, v3) ∨ {w}. We apply the dele-

tion/contraction method on e2, giving that

T (F 2) = T (F 2 − e2) + T (F 2/e2) (3.5)

= xT (F 1) + T (F 1
∗ ), (3.6)

where F 1
∗ := (v1, e1, v2)∨{w}∪{w, v2}. Further, we apply again the deletion/contraction

method on {w, v2} to obtain that

T (F 1
∗ ) = T (F 1) + yT (F 0). (3.7)

Thus, from (2) and (3) together, we have

T (F 2) = xT (F 1) + T (F 1) + yT (F 0). (3.8)

Hence,

T (F 2) = x(x2 + x+ y) + x2 + x+ y + y(x+ y)

= x3 + 2x2 + 2xy + x+ y2 + y. (3.9)
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Moreover, for all l ≥ 2, we have

T (F l;x, y) = T (F l − el) + T (F l/el)

= xT (F l−1) + T (F l−1
∗ ), (3.10)

where F l−1
∗ = F l−1 ∪ {w, vl}.

Claim 3.2.3.1. T (F r
∗ ;x, y) =

r∑
i=0

yiT (F r−i) for each r ≥ 1.

Proof. By induction on r. For r = 1 the result follows from Theorem 3.2.2.

Suppose F r
∗ = F r ∪ {w, vr+1}. Observe that {w, vr+1} becomes a 2−edge. So, as

one edge is deleted (in deletion), the other becomes a loop (in contraction). Thus, we

apply the deletion/contraction method on {w, vr+1} to obtain T (F r
∗ ;x, y) = T (F r) +

yT (F r−1
∗ ). By the inductive hypothesis,

T (F r
∗ ;x, y) = T (F r) + y

( r−1∑
i=0

yiT (F r−i−1)
)

= T (F r) +
r∑

i=1

yiT (F r−i)

=
r∑

i=0

yiT (F r−i). (3.11)

The result follows from (6) and Claim 3.2.3.1.
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Chapter 4 Other Related Graph Polynomials

Here, we look at three graph polynomials which are considered to be some specializa-

tions of the Tutte polynomial. Because each Tutte polynomial represents a surface,

these restricted univariate polynomials are some intersection with the cartesian plane.

For instance, the intersection of each surface with the plane y = 0 gives a curve along

which we can obtain a scaled version of a well-known polynomial called chromatic

polynomial. Likewise, when we restrict the surface to the values in a curve where

x = 0, we obtain a polynomial known as the flow polynomial. We present these poly-

nomials after they are defined and we give examples of such functions for different

graphs that were introduced in Chapter 1.

We note that, throughout this chapter, we assume that G is a simple graph on n

vertices with m edges and c components. In which case, when G is connected, c = 1

and when G is a null graph m = 0.

4.1 Chromatic Polynomial

A vertex coloring, also called a proper coloring of a graph assigns a color to each

vertex so that no vertices connected by an edge share the same colour. The problem

of finding such a graph colouring using λ colours (known as a λ-coloring) has been

well-studied.

The chromatic polynomial P (G, λ) gives the number of ways a graph G can be

colored with λ-colours. For example, a graph of n isolated vertices has P (G, λ) = λn

since each vertex can be colored with any of the λ-colours. Likewise, a tree G with n

vertices has chromatic polynomial

P (G, λ) = λ(λ− 1)n−1.
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We can start at any vertex and color it any of the λ-colours, then each adjacent vertex

can be colored any of the other λ− 1 colors, and we can repeat this process until the

tree is completely colored. Any graph with a loop has chromatic polynomial 0, since

there is no way to color the vertex at both ends of the loop with different colors.

The chromatic polynomial can be found by evaluating the Tutte polynomial

T (G; 1− λ, 0) and multiplying by a positive or negative monomial in λ that depends

on the number of vertices and components of the graph G. Thus,

P (G, λ) = (−1)n−cλT (G; 1− λ, 0)

For the C3 graph the chromatic polynomial is:

P (G, λ) = (−1)1λT (G; 1− λ, 0) (4.1)

= (−1)(λ)(λ2 − λ+ 2)

= −λ3 + λ2 − 2λ

For the C4 graph the chromatic polynomial is:

P (G, λ) = (−1)1λT (G; 1− λ, 0) (4.2)

= (−1)(λ)(−λ3 + 4λ2 − 6λ+ 3)

= λ4 − 4λ3 + 6λ2 − 3λ

For the cactus shown in Figure 2.8 the chromatic polynomial is

P (G, λ) = (−1)8λT (G; 1− λ, 0) (4.3)

= (λ)(−λ7 + 9λ6 − 35λ5 + 76λ4 − 99λ3 + 77λ2 − 33λ+ 6)

= −λ8 + 9λ7 − 35λ6 + 76λ5 − 99λ4 + 77λ3 − 33λ2 + 6λ

For the 2-tree graph shown in Figure 2.6, the chromatic polynomial is:
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P (G, λ) = (−1)3λT (G; 1− λ, 0) (4.4)

= −λ(1− λ)3 + 2(1− λ)2 + (1− λ)

= λ4 − 5λ3 + 8λ2 − 4λ

Note that this polynomial returns zero when λ is one or two, but P (G, 3) = 6.

Thus, the graph G is 3-colorable, and can be colored in 6 ways using 3 colors.

For the Peterson graph shown in Figure 2.2, the chromatic polynomial is:

P (G, λ) = (−1)9λT (G; 1− λ, 0) (4.5)

= (−1)
(
λ(6λ8 − 69λ7 + 315λ6 − 891λ5 + 1895λ4 − 3071λ3 + 3429λ2

− 2261λ+ 642 + (−λ+ 1)9
)

= (−6λ9 + 69λ8 − 315λ7 + 891λ6 − 1895λ5 + 3071λ4 − 3429λ3

+ 2261λ2 − 642λ− λ)(−λ+ 1)9

4.2 Flow Polynomial

Another essential area of graph theory concerns finding flows for graphs [20]. A

flow is an assignment of a value to each edge of a directed graph so that, for each

vertex, the sum of the values of all incident edges where the vertex is the tail (that

is, “outgoing” edges) is equal to the sum of the values of all incident edges where the

vertex is the head (“incoming” edges). A nowhere-zero flow also requires that each

edge value be non-zero. If a graph has a flow assigning values of an abelian group H,

it is called an H-flow. A k-flow is a Z-flow where edges are assigned values between

0 (or 1, if nowhere-zero) and k− 1. Thus, flow polynomial F (G, λ) gives the number

of nowhere-zero k-flows for a graph G. and abelian group H of order λ.

In general, we can obtain the flow polynomial by computing

F (G, k) = (−1)m−n+cT (G; 0, 1− k).
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For the C3 graph the flow polynomial is:

F (G, k) = (−1)1kT (G; 0, 1− k) (4.6)

= (−1)k(1− k)

= k2 − k

For the C4 graph the flow polynomial is:

F (G, k) = (−1)1kT (G; 0, 1− k) (4.7)

= (−1)k(1− k)

= k2 − k

For the cactus shown in Figure 2.8 the flow polynomial is

F (G, k) = (−1)1kT (G; 0, 1− k) (4.8)

= (−1)k(−k + 1)

= 0

We can calculate the flow polynomial of the 2-tree graph shown in Figure2.6 from

the Tutte polynomial:

F (G, k) = (−1)2kT (G; 0, 1− k) (4.9)

= (1− k) + (1− k)2

= k2 − 3k3 + 2k

For the Peterson graph shown in Figure 2.2, the Flow polynomial is:

F (G, k) = (−1)6kT (G; 0, 1− k) (4.10)

= k(k6 − 15k5 + 95k4 − 324k3 + 624k2 − 620k + 240)

= k7 − 15k6 + 95k5 − 324k4 + 624k3 − 620k2 + 240k
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4.3 Reliability Polynomial

The reliability polynomial of G, denoted by R(G; p), is the probability that G

remains connected when each edge in G fails with probability p. We obtain the

reliability polynomial of G by computing

R(G, p) = pn−c(1− p)m−n+cT (G; 1, p−1).

For the C3 graph the Reliability polynomial is:

R(G, p) = p2(1− p)1T (G; 1, p−1) (4.11)

= p2(1− p)(2 + p−1)

= p− p2

For the C4 graph the Reliability polynomial is:

R(G, p) = p3(1− p)1T (G; 1, p−1) (4.12)

= p3(1− p)(3− p−1)

= 3p2 − 4p3 + p4

For the cactus shown in Figure 2.8 the Reliability

R(G, p) = p8(1− p)0T (G; 1, p−1) (4.13)

= p8(p+ 11)

= p9 + 11p8

We can calculate the reliability polynomial of the 2-tree graph shown in Figure2.6
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from the Tutte polynomial:

R(G, p) = p3(1− p)2T (G; 1, p−1). (4.14)

= p3(1− p)2(4 + 3p−1 + p)

= p6 + 2p5 − 4p4 − 2p3 + 3p2

For the Peterson graph shown in Figure 2.2, the reliability polynomial is:

R(G, p) = p14(1− p)6T (G; 1, p−1). (4.15)

= p14(1− p)6(p5 + 9p4 + 45p3 + 155p2 + 390p+ 1344)

= (1− p)6(p19 + 9p18 + 45p17 + 155p16 + 390p15 + 1344p14)
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Chapter 5 Some Applications

The information encoded in the Tutte polynomial has a number of applications, and

is useful in a wide variety of domains. One such piece of information is the number

of spanning trees of a graph, which is important in the theory of electrical networks.

Another is the number of colorings of a graph. A well-know application of this

information is finding whether a map can be colored using four colors with each

adjacent region (or country) a different color. However, many other applications exist.

A graph might represent a scheduling problem where the edges correspond to items

that cannot be scheduled at the same time. For example, consider a graph where the

vertices correspond to exams, and there is an edge between vertices if there is at least

one student taking both exams. Then, a vertex coloring, where each color corresponds

to a different day for an exam, gives a schedule where no student has to sit two exams

in the same day. Alternatively, a graph might correspond to a network of nodes, where

something travels between the nodes. An obvious example is a computer network.

Beyond these applications, here, we present two fundamental applications: one is the

evaluation of Tutte polynomial which gives some characterizations of the graphs and

the other is a representation of the function. Here, we present both applications.

5.1 Data Encoded in the Tutte polynomial

Here, we evaluate the Tutte Polynomials of the graphs that were introduced in Chap-

ter 1.
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5.1.1 Counting spanning trees

Given a connected graph G and it’s corresponding Tutte Polynomial T (G;x, y), eval-

uating T (G; 1, 1) will produce the number of spanning trees in a connected graph.

Examples:

1. For a cycle graph G = C3 where T (G;x, y) = x2 + x + y, we will find that

T (G; 1, 1) = 3. In which case, we can conclude that C3 admits 3 spanning trees.

2. For a cycle graph G = C4 we have T (G;x, y) = x3 + x2 + x+ y. In which case

T (G; 1, 1) = 4. So, we can conclude that C4 admits 4 spanning trees.

3. For G = θ(1, 2, 2), a 3-bridge graph as shown in Figure 2.6, T (G;x, y) = x3 +

2x2 + 2xy+ x+ y+ y2 and T (G; 1, 1) = 8. In which case, we can conclude that

G = θ(1, 2, 2) admits 8 spanning trees.

4. For the cactus G shown in Figure 2.8 with T (G;x, y) = x7 + 2x6 + x5y + 2x5 +

2x4y+x4+2x3y+x2y2, we have T (G; 1, 1) = 12. In which case, we can conclude

that G admits 12 spanning trees.

5. For the Peterson G shown in Figure 2.2 with T (G;x, y) = 36x+120x2+180x3+

170x4 + 114x5 + 21x7 + 6x8 +x9 + 36y+ 84y2 + 75y3 + 35y4 + 9y5 + y6 + 168xy+

240x2y+170x3y+70x4y+12x5y+171xy2+105x2y2+30x3y2+65xy3+15x2y3+

10xy4, we have T (G; 1, 1) = 1, 791. In which case, we can conclude that G

admits 1, 791 spanning trees.

5.1.2 Counting acyclic subgraphs

Given a graph G and it’s corresponding Tutte Polynomial T (G;x, y), evaluating

T (G; 2, 1) will produce the number of forest (acyclic subgraphs) of graph G.

Examples:

1. For a cycle graph C3 as shown in Figure 2.4 where T (G;x, y) = x2 + x + y,

we will find that T (G; 2, 1) = 7. In which case, we can conclude that C3 will

produce 7 forest (acyclic subgraphs) of graph G.

31



2. For a cycle graph C4 as shown in Figure 2.5 where T (G;x, y) = x3 +x2 +x+ y,

we will find that T (G; 2, 1) = 15. In which case, we can conclude that C4 will

produce 15 forest (acyclic subgraphs) of graph G.

3. For G = θ(1, 2, 2) as shown in Figure 2.6, T (G;x, y) = x3+2x2+2xy+x+y+y2

and T (G; 2, 1) = 24. In which case, we can conclude that G = θ(1, 2, 2) will

produce 24 forest (acyclic subgraphs) of graph G.

4. For the cactus G shown in Figure 2.8 with T (G;x, y) = x7 + 2x6 + x5y + 2x5 +

2x4y + x4 + 2x3y + x2y2, we have T (G; 2, 1) = 420. In which case, we can

conclude that G admits 420 spanning trees.

5. For the Peterson G shown in Figure 2.2 with T (G;x, y) = 36x+120x2+180x3+

170x4+114x5+21x7+6x8+36x9y+84y2+75y3+35y4+9y5+y6+168xy+240x2y+

170x3y+ 70x4y+ 12x5y+ 171xy2 + 105x2y2 + 30x3y2 + 65xy3 + 15x2y3 + 10xy4,

we have T (G; 2, 1) = 18, 708. In which case, we can conclude that G admits

18, 708 spanning trees.

5.1.3 Counting connected spanning subgraphs

Given a connected graph G and it’s corresponding Tutte Polynomial T (G;x, y), eval-

uating T (G; 1, 2) will produce the number of connected subgraphs of G.

Examples:

1. For a cycle graph C3 as shown in Figure 2.4 where T (G;x, y) = x2 + x + y,

we will find that T (G; 1, 2) = 4. In which case, we can conclude that C3 will

produce 4 connected subgraphs of G.

2. For a cycle graph C4 as shown in Figure 2.5 where T (G;x, y) = x3 +x2 +x+ y,

we will find that T (G; 1, 2) = 5. In which case, we can conclude that C4 will

produce 5 connected subgraphs of G. Some of these subgraphs are shown in

Figure 1.2.

3. For G = θ(1, 2, 2) as shown in Figure 2.6, T (G;x, y) = x3+2x2+2xy+x+y+y2

and T (G; 1, 2) = 14. In which case, we can conclude that G = θ(1, 2, 2) will
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produce 14 connected subgraphs of G.

4. For the cactus G shown in Figure 2.8 with T (G;x, y) = x7 + 2x6 + x5y + 2x5 +

2x4y+x4+2x3y+x2y2, we have T (G; 1, 2) = 20. In which case, we can conclude

that G admits 20 spanning trees.

5. For the Peterson G shown in Figure 2.2 with T (G;x, y) = 36x+120x2+180x3+

170x4+114x5+21x7+6x8+36x9y+84y2+75y3+35y4+9y5+y6+168xy+240x2y+

170x3y+70x4y+12x5y+171xy2+105x2y2+30x3y2+65xy3+15x2y3+10xy4, we

have T (G; 1, 2) = 5, 912. In which case, we can conclude that G admits 5, 912

spanning trees.

5.1.4 Counting acyclic orientations

Given a graph G and it’s corresponding Tutte Polynomial T (G;x, y), evaluating

T (G; 2, 0) will produce the number of acyclic orientations.

Examples:

1. For a cycle graph C3 as shown in Figure 2.4 where T (G;x, y) = x2 + x + y,

we will find that T (G; 2, 0) = 6. In which case, we can conclude that C3 will

produce 6 acyclic orientations of G.

2. For a cycle graph C4 as shown in Figure 2.5 where T (G;x, y) = x3 +x2 +x+ y,

we will find that T (G; 2, 0) = 14. In which case, we can conclude that C4 will

produce 14 acyclic orientations of G.

3. For G = θ(1, 2, 2) as shown in Figure 2.6, T (G;x, y) = x3+2x2+2xy+x+y+y2

and T (G; 2, 0) = 18. In which case, we can conclude that G = θ(1, 2, 2) will

produce 18 acyclic orientations of G.

4. For the cactus G shown in Figure 2.8 with T (G;x, y) = x7 + 2x6 + x5y + 2x5 +

2x4y + x4 + 2x3y + x2y2, we have T (G; 2, 0) = 336. In which case, we can

conclude that G admits 336 spanning trees.

5. For the Peterson G shown in Figure 2.2 with T (G;x, y) = 36x+120x2+180x3+

170x4+114x5+21x7+6x8+36x9y+84y2+75y3+35y4+9y5+y6+168xy+240x2y+
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170x3y+ 70x4y+ 12x5y+ 171xy2 + 105x2y2 + 30x3y2 + 65xy3 + 15x2y3 + 10xy4,

we have T (G; 2, 0) = 13, 096. In which case, we can conclude that G admits

13, 096 spanning trees.

5.1.5 Counting all spanning subgraphs

Given a graph, G, and it’s corresponding Tutte Polynomial T (G;x, y), evaluating

T (G; 2, 2) will produce the number of spanning subgraphs. This number that can be

written as 2|E|, where |E| is the number of edges of G.

Examples:

1. For a cycle graph C3 as shown in Figure 2.4 where T (G;x, y) = x2 + x + y,

we will find that T (G; 2, 2) = 8. In which case, we can conclude that C3 will

produce 6 spanning subgraphs of G.

2. For a cycle graph C4 as shown in Figure 2.5 where T (G;x, y) = x3 +x2 +x+ y,

we will find that T (G; 2, 2) = 16. In which case, we can conclude that C4 will

produce 16 spanning subgraphs of G.

3. For G = θ(1, 2, 2) as shown in Figure 2.6, T (G;x, y) = x3+2x2+2xy+x+y+y2

and T (G; 2, 2) = 32. In which case, we can conclude that G = θ(1, 2, 2) will

produce 32 spanning subgraphs of G.

4. For the cactus G shown in Figure 2.8 with T (G;x, y) = x7 + 2x6 + x5y + 2x5 +

2x4y + x4 + 2x3y + x2y2, we have T (G; 2, 2) = 512. In which case, we can

conclude that G admits 512 spanning trees.

5. For the Peterson G shown in Figure 2.2 with T (G;x, y) = 36x+120x2+180x3+

170x4 + 114x5 + 21x7 + 6x8 +x9 + 36y+ 84y2 + 75y3 + 35y4 + 9y5 + y6 + 168xy+

240x2y+170x3y+70x4y+12x5y+171xy2+105x2y2+30x3y2+65xy3+15x2y3+

10xy4, we have T (G; 2, 2) = 29, 184. In which case, we can conclude that G

admits 29, 184 spanning trees.
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5.2 Plots of Tutte polynomials

The Tutte polynomial gives us a 3-dimensional surface that we can plot in the Carte-

sian coordinate system. Here, we plot the surfaces along with the contour plots of

all the graphs discussed in Chapter 1. We leave it, as an exercise for the readers to

compute other useful vectors such as the gradient, the normal vector and parameters

such as the curvature for these surfaces.

5.2.1 C3
∼= K3

T (C3;x, y) = x2 + x+ y.

Figure 5.1: Surface of the Tutte polynomial of K3
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Figure 5.2: Contour plot of the Tutte polynomial of K3

5.2.2 C4

T (C4;x, y) = x3 + x2 + x+ y.

Figure 5.3: Surface of the Tutte polynomial of K4
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Figure 5.4: Contour plot of the Tutte polynomial of K4

5.2.3 θ(1, 2, 2)

Given a Theta graph G = θ(1, 2, 2), we have T (G;x, y) = x3 + 2x2 + 2xy+x+ y+ y2.

Figure 5.5: Surface of the Tutte polynomial of θ(1, 2, 2)
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Figure 5.6: Contour plot of θ(1, 2, 2)

5.2.4 Cactus

Given the Cactus as shown in in Figure 2.8, we have T (G;x, y) = x3 + 2x2 + 2xy +

x+ y + y2.

Figure 5.7: Surface of the Tutte polynomial of a Cactus
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Figure 5.8: Contour plot of the Tutte polynomial of a Cactus

5.2.5 Peterson

Given the Peterson graph as shown in in Figure 2.2, we have T (G;x, y) = 36x+120x2+

180x3+170x4+114x5+21x7+6x8+x9+36y+84y2+75y3+35y4+9y5+y6+168xy+

240x2y+170x3y+70x4y+12x5y+171xy2+105x2y2+30x3y2+65xy3+15x2y3+10xy4.

Figure 5.9: Surface of the Tutte polynomial of Peterson Graph
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Figure 5.10: Contour plot of the Tutte polynomial of Peterson graph
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Chapter 6 Conclusion and Future Research

The Tutte polynomial, originally known as dichromatic polynomial has been com-

puted for several simple graphs including the famous Peterson graphs. Many exam-

ples were given and several of these results were proved using induction. Moreover,

Tutte polynomial has a particular relation with a number of well-known univariate

polynomials. For instance, the reliability polynomial of G, denoted by R(G, p), is

the probability that G remains connected when each edge in G fails with probability

p. The chromatic polynomial of G, denoted by P (G, λ), counts the number of ways

the vertices of G can be colored using at most λ colors. The flow polynomial of G,

denoted by F (G, k), counts the number of nowhere-zero k−flows. From the Tutte

polynomial of a loopless graph, we can recover the chromatic polynomial along y = 0

and the flow polynomial along x = 0. A survey of several related and unrelated poly-

nomials can be found in [2, 15, 21]. Thus, for a graph G on n vertices with m edges

and c components, the chromatic polynomial, the flow polynomial and the reliability

polynomial of G are respectively obtained from the Tutte polynomial by:

P (G, λ) = (−1)n−cλT (G; 1− λ, 0)

F (G, k) = (−1)m−n+cT (G; 0, 1− k)

R(G, p) = pn−c(1− p)m−n+cT (G; 1,
1

1− p
).

Our research did not focus on these polynomials, but we showed through some

results how these polynomials can be derived. We also showed how other impor-

tant evaluations of T (G;x, y) can be found at some specific points of the plane and

also along several algebraic curves. We refer to [10, 13, 17] for details about the

combinatorial interpretations of these evaluations.
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Future research can focus on Multigraphs such as the one shown in Figure 6.1.

Tutte polynomials of multigraphs can be computed using either of the techniques we

outlined in this thesis although the process is rather lengthy as the number of vertices

grow. Here, we present the Tutte polynomial of the multigraph shown in Figure 6.1.

Figure 6.1: Multigraph

Consider the graph G with edges labelled e1 . . . e10, as shown. Note that e7, e8, e9

are loops.

(i) G is reduced to G† by removing, not necessarily in this order, e9, e10, e8, e7,

and e6, where e10 and e6 represent a 4−edge and a 1−edge respectively and e9, e8,

and e7 are loops. From Proposition 3.1 (and the remark preceding it) follows that

T (G) = T (e10)T (e9)T (e8)T (e7)T (e6)T (G†) = xy3T (e10)T (G†) since

T (e9) = T (e8) = T (e7) = y and T (e6) = x. We now apply the algorithm on the edges

e5, e4, e3 and e2 of G†, giving respectively the following:

(ii) T (G†) = T (G† − e5) + T (G†/e5) = T (G1) + T (G2). Note that G2
∼= e10.

(iii) T (G2) = T (G2 − e4) + T (G2/e4) = T (G3) + y3.

(iv) T (G3) = T (G3 − e3) + T (G3/e3) = T (G4) + y2.

(v) T (G4) = T (G4 − e2) + T (G4/e2) = x+ y.

Using (v), (iv) yields T (G3) = x+y+y2. From (iv), (iii) yields T (G2) = T (e10) =

x + y + y2 + y3. Now we note that T (G1) = T (e4)T (G3) = x(x + y + y2). So, (ii)

yields (from (iii)) that T (G†) = x(x+ y+ y2) + x+ y+ y2 + y3. Finally, from (ii) we
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get (i), namely that

T (G) = xy3(x+ y + y2 + y3)
(
x(x+ y + y2) + x+ y + y2 + y3

)
.

We point out that, in [1], the authors introduced two parameters, ζ and γ, to

simplified such expressions. They are, for all m ≥ 1:

ζm :=
(m−1∑

k=0

yk
)
, (6.1)

and

γm := (x− 1 + ζm). (6.2)

Hence, T (G) = y3γ1γ4(γ1γ3 + γ4).
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